Artículo

Inteligencia Artificial: la guía para entender su historia y evolución

Por Douglas da Silva, Web Content & SEO Associate, LATAM

Publicado 10 Noviembre 2020
Última actualización en 28 Abril 2021

¿Te imaginas un día de tu vida sin la inteligencia artificial? A lo mejor crees que no sería nada extraordinario. “A fin de cuentas-puedes pensar- no tengo un robot en casa, ni tampoco lo uso en mi empresa”.

Te levantas a la hora de siempre, realizas tus actividades matutinas habituales y a la hora del desayuno, cuando empiezas a revisar tus correos electrónicos: “¿De nuevo? ¡No aguanto más los correos spam en mi bandeja principal!”

Bastante contrariado por lo ocurrido con tus emails, te montas en tu carro. Vas a tu primera reunión con aquel cliente tan importante, con el que pretendes cerrar una venta extraordinaria.

El lugar de la reunión lo escogió el cliente y lo recibiste mediante una aplicación de mensajería instantánea. Es en un barrio nuevo y no sabes a ciencia cierta cómo llegar. Piensas: “Si el carro tuviese su propio mapa...”

Finalmente llegas al lugar de la cita. Te demoras unos minutos en estacionar. Cuando encuentras uno de los pocos espacios libres, tienes que esforzarte para colocar tu carro en un pequeño espacio de difícil acceso.

Te bajas pensando: “Si el carro tuviera alguna función que me ayudara a estacionar... Además, parece que va a llover. No leí el pronóstico del tiempo. Sería ideal poderle preguntar al teléfono si debo usar paraguas o no”.

Como seguramente sabes, para cada uno de los problemas de tu día imaginario existe una solución. En el caso de los correos spam, la mayoría no va a tu bandeja principal gracias al uso del Machine Learning.

El Google Maps te ayuda a llegar de forma rápida a cualquier dirección, mientras que los sensores de estacionamiento contribuyen para que puedas estacionar de una forma más ágil y segura.

Los asistentes virtuales integrados a los dispositivos móviles, “responden” a diversas preguntas que se le realizan. Alexa, Cortana y Siri (ejemplos de inteligencia artificial) son nombres bien familiares para muchas personas.

Estas soluciones forman parte de lo que se ha dado en llamar inteligencia artificial. En la actualidad su presencia se ha hecho tan cotidiana que no siempre logramos percibir que está entre nosotros.

Un informe de Statista refleja que en 2020, se espera un crecimiento en la facturación del mercado global de software de inteligencia artificial (IA) de aproximadamente un 154% en comparación con 2019.

Un crecimiento de tal magnitud va a colocar la facturación de este importante

mercado por encima de los 22.000 millones de dólares estadounidenses. Impresionante, ¿verdad?

Si te interesa saber cómo surgió la IA, cómo se ha posicionado con tanta fuerza en el mercado y cuáles son sus perspectivas; continúa leyendo. Hablaremos también de la importancia que tiene para tu empresa la utilización de la IA.

¿Qué es la Inteligencia Artificial?

Concepto de Inteligencia Artificial

La simulación que realizan determinadas máquinas y sistemas informáticos de los procesos de inteligencia humana se conoce como Inteligencia Artificial. Este concepto abarca desde la automatización de procesos hasta la robótica avanzada.

Existen varios criterios para clasificar la inteligencia artificial. Uno de ellos la divide en dos grandes tipos: Inteligencia Artificial Débil e Inteligencia Artificial Fuerte.

La inteligencia artificial débil se conoce también como inteligencia artificial estrecha y agrupa a los sistemas concebidos y entrenados para una tarea particular. Los asistentes virtuales son un ejemplo de IA débil.

La inteligencia artificial fuerte engloba a sistemas de IA que poseen habilidades cognitivas humanas generalizadas. Estos sistemas son capaces de resolver tareas desconocidas, pues cuentan con la “inteligencia” para encontrar una solución.

Un ejemplo de inteligencia general artificial, como también se conoce a la IA fuerte son los chatbots más avanzados, los cuales cumplen tareas de mayor complejidad en la organizaciones.

Los procesos que sustentan la inteligencia artificial son el aprendizaje, el razonamiento y la autocorrección. El aprendizaje incluye la adquisición de la información y de las reglas para su uso.

Los sistemas de inteligencia artificial utilizan el razonamiento para arribar a conclusiones sobre la base del uso de las reglas aprendidas. Esto a su vez trae como consecuencia la autocorrección.

La inteligencia artificial, ya sea débil o fuerte, está presente en muchas de las facetas de nuestras vidas. ¿Cómo ha sido el camino para llegar hasta aquí? A continuación te lo mostraremos.

Historia de la Inteligencia Artificial

Antecedentes IA

La idea de crear inteligencia artificial desafía a los seres humanos desde tiempos remotos. Entre los mitos y leyendas de la antigua Grecia se destaca el de Galatea, escultura de Pigmalión a la que los dioses le conceden el don de la vida.

Según la mitología griega, los trípodes fabricados por Hefesto servían en las fiestas y banquetes de los dioses. En su fragua mística, el dios herrero también creó unas ayudantes de metal para asistirlo en su trabajo diario.

Ya en la Edad Media varios textos místicos hacen referencia a la figura del Golem. Este término de origen judío describe a un ser animado, creado mágicamente a partir de materia inanimada.

Probablemente el antecedente de la inteligencia artificial que más se conoce en el mundo aparece en un filme del siglo XX. Se trata de la película Frankenstein, precursora del género de ciencia ficción.

La palabra robot es mencionada por primera vez en la obra de teatro checa R.U.R. Es la historia de unos seres artificiales con características humanoides. Creados para ayudar a la humanidad, finalmente terminan destruyéndola.

Es cierto que estos ejemplos pertenecen al campo de la ficción. Sin embargo, han servido como inspiración a numerosos investigadores en su búsqueda incesante por el surgimiento y consolidación de la inteligencia artificial.

Origen IA

Los orígenes de la inteligencia artificial están íntimamente vinculados a los de la computación. Grandes nombres de las ciencias computacionales forjaron las condiciones para el surgimiento de la IA.

Durante las décadas del 30 y del 40 del siglo XX se publican los primeros trabajos que abordan de alguna manera la inteligencia artificial. Es importante señalar que todavía no existía oficialmente el término IA.

El artículo Números Calculables, publicado en 1936 por Alan Turing, tuvo una fuerte repercusión. Se considera que en este texto se establecen las bases teóricas de las ciencias de la computación.

En este artículo Alan introdujo el concepto de Máquina de Turing. Además de formalizar la definición de algoritmo, las ideas expuestas en la publicación son consideradas como precursoras de las computadoras digitales.

Una conclusión trascendental a la que arribó Turing con ayuda de su máquina es la de que existen problemas que ninguna computadora puede resolver. Por tal demostración es considerado como el padre de la teoría de la computabilidad.

Un logro extraordinario gestado por Alan Turing en los orígenes de la inteligencia artificial es la construcción del primer computador electromecánico en el año 1940.

Ya para 1941 otro precursor de la inteligencia artificial, el ingeniero alemán Konrad Zuse crea la Z3, primera computadora electrónica digital totalmente funcional. Zuse es también el creador del primer lenguaje de programación de alto nivel.

La primera teoría matemática del cerebro se debe a la conjunción entre un joven apasionado por la lógica y un eminente neurocientífico, quienes crearon el primer modelo formal del procesamiento de información a nivel del cerebro.

Considerado oficialmente como el primer trabajo específico del campo de la inteligencia artificial, en 1943 es presentado el Modelo de Neuronas Artificiales de los autores Warren McCulloch y Walter Pitts.

Evolución IA (Etapas)

Etapa Primaria (1956-1970)

El año 1956 marca un hito trascendental para el surgimiento y evolución de la inteligencia artificial. En este año se produce en el Dartmouth College una reunión entre destacados investigadores de esta incipiente área.

En dicha reunión participó, entre otros, John McCarthy, profesor y famoso matemático. McCarthy, creador del conocido lenguaje LISP, fue también quien designó a la nueva ciencia que surgía con el nombre de Inteligencia Artificial.

A partir de esta reunión, comienzan a distinguirse dos tendencias en el estudio de la inteligencia artificial: la tendencia conocida como conexionismo y la denominada como ingeniería del conocimiento.

En la Etapa Primaria los investigadores que trabajaban en la línea de investigación cognitiva produjeron trabajos dirigidos al desarrollo de algoritmos y de estrategias de búsqueda para la solución de problemas.

Allen Newell y Herbert Simon se destacan dentro de esta tendencia. En su afán de alcanzar un modelo de representación del conocimiento humano, crearon la técnica más importante de representación: las reglas de producción.

Por otro lado, los investigadores que formaban parte de la tendencia conexionista también produjeron trabajos relevantes en esta primera etapa. Un ejemplo es el Perceptrón, desarrollado por Frank Rosenblatt en 1959.

El Perceptrón es una unidad neuronal artificial que se puede entrenar mediante reglas de aprendizaje supervisado, no supervisado y por reforzamiento.

Un perceptrón alcanza funcionalidad solamente en una red de iguales.

En esta primera etapa, a pesar de crearse las bases para el desarrollo posterior, las investigaciones de ambas tendencias tuvieron una limitación en común: promovieron expectativas exageradas.

La idea de construir un sistema capaz de resolver cualquier tipo de problema, o la de crear una base de datos que permitiera traducir automáticamente y sin errores, son expectativas incumplidas que se esbozaron en la primera etapa de IA.

A lo anterior se le sumó el hecho de disponer de insuficientes recursos humanos, financieros y tecnológicos para sus investigaciones. Siendo así, el reconocimiento internacional hacia los pioneros de la IA fue prácticamente nulo en esta etapa.

Etapa de Prototipos(1971-1981)

En la etapa de prototipos se realiza un reconocimiento justo a los logros alcanzados en la primera etapa. Además, se desarrolla un análisis crítico dirigido a comprender las causas de los fracasos obtenidos en el período anterior.

Al profundizar en el análisis descubren que en muchas de las técnicas propuestas por los iniciadores de la IA faltaba la consideración de un elemento muy importante: el conocimiento heurístico.

Este descubrimiento condujo a la inclusión de la experiencia como variable en los sistemas de inteligencia artificial. Es entonces cuando en las universidades comienzan a desarrollarse los primeros prototipos exitosos de sistemas.

Aunque no es hasta 1977 que surge el término Sistema Experto, el primero de ellos se da a conocer en 1974. Se trata de Mycin, un sistema de diagnóstico de enfermedades infecciosas, producido por la Universidad de Stanford.

En 1975 ve la luz la versión inicial de un lenguaje de programación lógica: PROLOG. Este período se destaca también por el desarrollo en diversas áreas de importantes prototipos funcionales.

Puff fue un prototipo diseñado para auxiliar en el diagnóstico de enfermedades pulmonares. Prospector fue creado para contribuir en la prospección geológica, mientras Dendral fue desarrollado para el análisis de química orgánica.

Estos y otros prototipos tuvieron éxito en los campos para los cuales fueron diseñados. Por consiguiente, atrajeron la atención de los inversionistas. Pero ya eso es un tema a tratar en la próxima etapa.

Etapa de Difusión Industrial (1981-Actualidad)

La etapa que transcurre entre 1981 y la actualidad ha sido denominada como la etapa de difusión industrial. Esto se debe al hecho de que los prototipos salen de los laboratorios y universidades para entrar en el mundo de la producción y el mercado.

En el contexto de esta especie de fiebre de difusión de la inteligencia artificial, no se ha tenido el mismo entusiasmo para el financiamiento de la investigación básica.

Entre los dominios de aplicación de la inteligencia artificial que más se han beneficiado con inversiones e investigación en en esta tercera etapa se encuentran los sistemas expertos y las bases de datos inteligentes.

Un ejemplo de sistema experto desarrollado en esta etapa es el R1 / XCON. Este sistema posee la funcionalidad de elegir un software específico para generar un sistema informático acorde a las preferencias del usuario.

En esta etapa se han desarrollado numerosos sistemas expertos en el área de la medicina como DXplain, Cadet y PXDES. Este último permite determinar fácilmente el tipo y el grado de cáncer de pulmón a través de un análisis de datos.

Con el inicio de la tercera etapa de la inteligencia artificial en la década de los 80 del siglo pasado surge también el concepto de Base de Datos Inteligentes. Es un concepto renovador que trasciende al simple almacenamiento de información.

Una base de datos inteligente es un sistema que administra la información de una forma que parece natural ante los ojos de los clientes. Tiene un carácter interactivo. Es mucho más que un mantenimiento ordenado de registros.

Entre las bases de datos inteligentes más conocidas están Oracle, DB2, SQL Server. También se destacan las del tipo NoSQL, concebidas para superar grandes desafíos de administración de datos y aumentar la eficiencia de la organización.

La robótica, las redes neuronales, el reconocimiento de patrones, el procesamiento del lenguaje natural y el aprendizaje automático son dominios que también han recibido una atención especial en la tercera etapa de la IA.

Las perspectivas de la inteligencia artificial en la etapa que transcurre son extraordinarias. Se avizora que a futuro las aplicaciones robóticas, el blockchain y los servicios en la nube continúen ganando protagonismo.

Las perspectivas casi ilimitadas de la inteligencia artificial han propiciado que se abra un necesario debate sobre responsabilidad ética. Una tecnología de tanta complejidad e impacto debe ser manejada bajo sólidos valores humanos.

Se debaten temas como la prudencia, la fiabilidad y la rendición de cuentas. La responsabilidad humana sobre la inteligencia artificial y la necesaria limitación de autonomía de estos sistemas también se integran al debate.

No puede faltar en este debate ético el papel que desempeña el ser humano en cada uno de los procesos que involucran a la Inteligencia artificial. Hasta hoy la inteligencia artificial no ha conseguido superar a la humana.

Ventajas de la Inteligencia Artificial

“Con las aplicaciones de Inteligencia Artificial, ahora los clientes tienen nuevas capacidades en soporte de autoservicio y nuevos tipos de interacciones automatizadas; permitiendo a las empresas la posibilidad de obtener y analizar grandes volúmenes de datos comparativos, así como la obtención de información valiosa sobre los gustos y preferencias de los clientes, facilitando de esta manera la predicción de los mejores escenarios para el desarrollo de modelos de negocios en plataformas tan complejas como la de eCommerce”

Estas palabras de Jason Maynard, Vicepresidente de Producto de Zendesk, ilustran la importancia de la Inteligencia Artificial para ofrecerle una excelente experiencia al cliente.

Ventajas como la omnicanalidad, la reducción del tiempo de espera, la automatización y el análisis eficiente de grandes volúmenes de datos justifican ampliamente la introducción de la inteligencia artificial en tu empresa.

Zendesk te ofrece una herramienta de inteligencia artificial de gran utilidad, con la que puedes estar presente las 24 horas en la vida del cliente y brindarle de manera automática soluciones a problemáticas complejas.

Con Zendesk Chat, un software de chat en vivo, les dirás adiós a las demoras innecesarias y conseguirás mejorar de forma significativa la experiencia de tu cliente. ¡Pruébalo gratis!

Herramienta de chat online para empresas

Zendesk Chat es un software de chat en tiempo real para que pueda interactuar con sus clientes de una manera más ágil y práctica.